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Abstract Despite significant advances in automated

nuclear magnetic resonance-based protein structure deter-

mination, the high numbers of false positives and false

negatives among the peaks selected by fully automated

methods remain a problem. These false positives and

negatives impair the performance of resonance assignment

methods. One of the main reasons for this problem is that

the computational research community often considers

peak picking and resonance assignment to be two separate

problems, whereas spectroscopists use expert knowledge to

pick peaks and assign their resonances at the same time.

We propose a novel framework that simultaneously con-

ducts slice picking and spin system forming, an essential

step in resonance assignment. Our framework then

employs a genetic algorithm, directed by both connectivity

information and amino acid typing information from the

spin systems, to assign the spin systems to residues. The

inputs to our framework can be as few as two commonly

used spectra, i.e., CBCA(CO)NH and HNCACB. Different

from the existing peak picking and resonance assignment

methods that treat peaks as the units, our method is based

on ‘slices’, which are one-dimensional vectors in three-

dimensional spectra that correspond to certain (N;H) val-

ues. Experimental results on both benchmark simulated

data sets and four real protein data sets demonstrate that

our method significantly outperforms the state-of-the-art

methods while using a less number of spectra than those

methods. Our method is freely available at http://sfb.kaust.

edu.sa/Pages/Software.aspx.

Keywords Resonance assignment � Peak picking � Spin

system � Wavelet

Introduction

Up to now, the structures of most known protein structures

were delineated by two techniques, X-ray crystallography

and nuclear magnetic resonance (NMR) (Berman et al.

2000). In contrast to X-ray crystallography that requires

proteins to be crystallized, NMR can study protein struc-

tures in solvent and provide unique information about the

dynamics of the proteins. NMR protein structure determi-

nation is a multi-step procedure (Wüthrich 1986), that

consists of spectrum generation, which generates through-

bond and through-space spectra, peak picking, which

identifies coupling signals from the spectra, resonance

assignment, which assigns chemical shifts from the peaks

to corresponding atoms of the protein, nuclear Overhauser

enhancement (NOE) assignment, which determines dis-

tance constraints, and structure calculation, which calcu-

lates the final structures (ensemble).

The traditional NMR protein structure determination

process has mainly been accomplished by manual or semi-
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automated data processing, with the help of visualization

and analysis tools (Johnson and Blevins 1994; Delaglio

et al. 1995; Günther et al. 2000; Vranken et al. 2005;

Goddard and Kneller 2007). This process is costly and

time-consuming. Various computational methods have

therefore been developed to automate each step of this

tedious process (Herrmann et al. 2002; Altieri and Byrd

2004; Gronwald and Kalbitzer 2004; Dancea and Güntert

2005; Takeda et al. 2007; Güntert 2009; Alipanahi et al.

2009; Ikeya et al. 2009; Alipanahi et al. 2011; Jang et al.

2011; Gao 2012, 2013). Among the aforementioned five

steps, peak picking and resonance assignment require

advanced computational techniques. For well-structured

small- and medium-size proteins with high signal-to-noise

ratios, a number of automated peak picking (Garret et al.

1991; Carrara et al. 1993; Antz et al. 1995; Koradi et al.

1998; Korzhneva et al. 2001; Liu et al. 2012; Abbas et al.

2013; Cheng et al. 2014) and resonance assignment

methods (Güntert et al. 2000; Coggins and Zhou 2003;

Jung and Zweckstetter 2004; Lin et al. 2005; Wan and Lin

2007; Masse and Keller 2005; Lemak et al. 2008; Volk

et al. 2008; Jang et al. 2010; Tycko and Hu 2010; Alipanahi

et al. 2011; Zeng et al. 2011; Jang et al. 2011) have been

shown to work well.

Peak picking and resonance assignment are often treated

as two separate problems. AUTOPSY is among the pio-

neering works in automated peak picking (Koradi et al.

1998). AUTOPSY first estimates the noise level of the given

spectrum by assuming that the noise is white Gaussian. It

then eliminates all the data points that have intensity values

lower than the estimated noise level. The spectrum is then

approximated from the outer product of one-dimensional

line shapes and peaks are predicted inside each line shape.

PICKY was developed to improve the performance of

AUTOPSY (Alipanahi et al. 2009). PICKY adopts a similar

idea to estimate the noise level and removes most of the data

points that do not contain signals. In contrast to AUTOPSY,

PICKY decomposes the remaining spectrum into small

‘components’, each of which contains only one or a few

peaks. Singular value decomposition is then applied to each

component to identify the peaks. A multi-step refinement is

developed to refine the predicted peaks. WaVPeak was

recently proposed based on the ‘soft-thresholding’ idea (Liu

et al. 2012). Different from AUTOPSY and PICKY, which

remove many data points from the spectrum, WaVPeak

smoothes the spectrum by wavelet decomposition and

reconstructs the spectrum without removing any data point,

thus eliminating the risk of removing true but weak peaks.

WaVPeak further estimates the volume of each predicted

peak to identify the true peaks. The peak volume was

demonstrated to be more powerful than the intensity values.

The peak selection problem was further cast as a multiple

testing problem and a Benjamini–Hochberg-based algo-

rithm was proposed to determine automatically how many

predicted peaks to return to the user (Abbas et al. 2013).

The resonance assignment problem has long been a target

of the computational research community due to its clear

formulation. Given peaks identified from through-bond

spectra that share the same ‘root’ (N, H), such as 15N-HSQC,

CBCA(CO)NH, and HNCACB, the goal is to link and assign

the peaks along the amino acid chain of the protein by using

inter- and intra-residue information. There are various

existing assignment methods, including search algorithms

(Bartels et al. 1996; Zimmerman et al. 1997; Coggins and

Zhou 2003; Volk et al. 2008; Lemak et al. 2008), maximum

independent set algorithms (Wu et al. 2006), sequential

algorithms (Wan and Lin 2007; Tycko and Hu 2010), logic

algorithms (Masse and Keller 2005), fragment-based algo-

rithms (Güntert et al. 2000; Jung and Zweckstetter 2004)

and optimization algorithms (Zimmerman et al. 1997; Lin

et al. 2005; Alipanahi et al. 2011; Jang et al. 2010, 2011,

2012). AUTOASSIGN (Zimmerman et al. 1997), one of the

widely used assignment method, requires peak lists of the

2D 15N-HSQC spectrum and a number of 3D spectra. It

formulates the assignment problem as a constraint satis-

faction problem in artificial intelligence and encodes

information from a domain-knowledge base to enhance the

accuracy. MARS was proposed as a consensus-based

assignment method that makes both local and global

assignments (Jung and Zweckstetter 2004). Local assign-

ment is done through the identification of reliably connected

fragments, whereas global assignment is done through the

optimization of a pseudo-energy function. GANA, which

uses a genetic algorithm to find good assignments, was later

proposed (Lin et al. 2005). The key part in GANA is the

fitness function, which determines how computer-simulated

evolution proceeds. GANA uses connectivity information

between spin systems to build the fitness function. IPASS

was recently proposed. It formulates resonance assignment

as an integer linear programming problem (Alipanahi et al.

2011). The spin systems are formed by peaks from
15N-HSQC, CBCA(CO)NH and HNCACB and the con-

nectivity information is extracted from both through-bond

spectra and the N-NOESY spectrum. To reduce the search

space, a probabilistic model based on BioMagResBank

(BMRB) (Seavey et al. 1991) was developed to estimate

how likely it is that a particular spin system is found for a

certain residue position. Experimental results on automati-

cally picked peaks by PICKY on four real protein NMR data

sets demonstrated that IPASS was more error tolerant than

were the other assignment methods and that it could work

reasonably well with peaks chosen by automated methods.
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Despite the significant advances in the development of

peak picking and resonance assignment methods, such

methods still do not reduce the required manual work nor

can they be practically applied in NMR labs. The main

reason is that these methods lose significant information.

One source of this loss of information is that almost all the

peak picking methods consider peaks as independent

signals, whereas many of them are indeed coupled.

For instance, in CBCA(CO)NH, if we pick a peak at

ðNi;Ci;HiÞ, it is very likely that there is another peak in the

ðNi;HiÞ slice, unless the previous residue is a glycine or the

signal is absent from the spectrum. Similar reasoning is

valid for HNCACB as well. Another source of loss of

information is that peak picking and resonance assignment

are usually considered as two consecutive steps. Once peak

picking is done, resonance assignment methods assign

those peaks regardless of their quality. That is why most

resonance assignment methods perform poorly with auto-

matically picked peaks. However, the assignment step

should provide feedback information to direct the peak

picking or to improve the peak quality.

In this paper, we propose a framework that simulta-

neously picks slices and forms them into spin systems for

assignment purposes. The inputs to our framework can be

as few as two spectra, i.e., CBCA(CO)NH and HNCACB,

in the UCSF format. If more spectra are available, the

performance can be further boosted. Different from the

existing methods that pick peaks, our method considers

carbon ‘slices’ (denoted as C-slices) as the target in

CBCA(CO)NH and HNCACB. Each C-slice is a one-

dimensional (1D) vector that corresponds to a certain

ðN;HÞ pair. We use the slices chosen from the CBCA

(CO)NH spectrum to guide the slice picking in HNCACB

to yield better spin systems. In this way, the assignment

sends feedback information to guide the slice picking and

the dependency of peaks is also modeled. After forming

spin systems, we feed them to a genetic algorithm to

assign them to the residues of the protein. Here ‘simul-

taneous’ refers to the fact that information is propagated

forwardly and backwardly between the peak picking and

spin system forming steps in our method. Thus, our

method is fully automatically from the two input NMR

spectra to the final resonance assignment, without any

human intervention. Although a number of automated

resonance assignment methods are available, few of them

work directly on automatically picked peaks that have

low quality. IPASS (Alipanahi et al. 2011) is considered

to be the state-of-the-art error-tolerant assignment method.

We thus tested our framework on the four real protein

raw spectra sets that were used to test IPASS, as well as

20 benchmark simulated data sets, ranging from 66 to 370

aa. We compared our method with five state-of-the-art

methods, MARS, RIBRA, AUTOASSIGN, IPASS and

GANA. Our results demonstrate that our framework sig-

nificantly outperforms the existing methods in terms of

sensitivity and it compares favorably on specificity. The

improvement is further indicated by the fact that IPASS,

AUTOASSIGN, MARS and RIBRA need more spectra

than our method. Our results demonstrate that our pro-

posed framework is able to extract much more informa-

tion from the real data than the five state-of-the-art

methods.

Materials and methods

Overview of our method

In this work, we assume the minimum inputs to be two

types of commonly used spectra, CBCA(CO)NH and

HNCACB. These two spectra contain adjacency informa-

tion. Peaks in CBCA(CO)NH are in the forms

(Ni;CAi�1;Hi) and (Ni;CBi�1;Hi), where i is the index of

the residue and CA and CB stand for Ca and Cb, respec-

tively. On the other hand, the HNCACB spectrum contains

peaks in the forms (Ni;CAi�1;Hi), (Ni;CBi�1;Hi),

(Ni;CAi;Hi) and (Ni;CBi;Hi), where CA peaks are positive

and CB peaks are negative. Therefore, from these two

spectra, in the ideal case, we can form spin systems of the

form ðNi;Hi;CAi�1;CBi�1;CAi;CBiÞ. However, in reality,

there are various sources of errors, including false positive

peaks, false negative peaks, linkage errors, and ambiguities

in forming spin systems. Our method is based on the

observations that a signaling slice, i.e., a 1D vector corre-

sponds to a certain ðN;HÞ pair in CBCA(CO)NH, should

contain two peaks (unless the previous residue is a glycine

in which case it should contain one), whereas in HNCACB

it should contain four peaks (unless the current or the

previous residue is a glycine in which case it should con-

tain three). Our method picks slices instead of peaks and

uses the slice information in CBCA(CO)NH to assist the

slice picking in HNCACB by considering assignment

needs. In this manner, the slice picking and spin system

forming are done simultaneously and better spin systems

are formed. The spin systems are further assigned to pro-

tein residues by a genetic algorithm. Although both GANA

and our method use genetic algorithms, the two methods

are distinct in the sense that GANA takes spin system

groups as inputs whereas our method takes spin systems as

inputs. Furthermore, in contrast to GANA, the fitness

function of our genetic algorithm contains both connec-

tivity information between spin systems and amino acid

typing information.

Our method does not depend on any specifically

trained parameters. All the parameters in our method are
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either set to the rule-of-thumb values, such as error range

for different atom types, or set according to previous

studies, such as the number of individuals in the genetic

algorithm that was set in the same way as in GANA.

Therefore, all the results in this paper are based on test

proteins that are not involved in the training process.

Forming spin systems by slice picking

Forming spin systems is the prerequisite to resonance

assignment. A spin system is the set of chemical shift

values from the same or neighboring residues. Previous

studies have verified that better spin systems result in better

resonance assignments (Jung and Zweckstetter 2004; Lin

et al. 2005; Alipanahi et al. 2011). All existing spin system

forming methods form spin systems from the lists of peaks

provided by either manual or automated peak picking

methods. Peak picking and spin system forming are thus

considered as two consecutive steps. Our method, in con-

trast, depends on 1D C-slices and uses information from

both steps to guide each other. To extract a signaling car-

bon slice from these two spectra or any (N, H)-rooted 3D

spectrum, we fix a nitrogen value and a hydrogen value.

The nitrogen value should be a local maximum in a

nitrogen slice, and similarly the hydrogen value should be a

local maximum in a hydrogen slice.

The extraction of carbon slices from CBCA(CO)NH is

done in the following manner. For every single pair of

carbon and hydrogen values (i.e., every point on the

(C;H) space), (C1;H1), there is a corresponding nitrogen

slice. We smooth the nitrogen slice using wavelet

smoothing with a soft threshold to decrease the effect of

noise. More technical details of wavelet smoothing can be

found in Supplementary Materials S1. We then search for

the highest local maximum in the smoothed nitrogen

slice. Let the value of nitrogen at this point be N1. The

pair of (N1;C1) then represents a hydrogen slice, which is

further smoothed using wavelet smoothing. We then

search for the highest local maximum in this hydrogen

slice and let its value be H01. If H1 ¼ H01, we save the two

values, H1 and N1. These two values indicate a C-slice

that our method then chooses. In this way, our method

identifies all the carbon slices that have ðN;HÞ values as

local maxima.

For each C-slice we identify in CBCA(CO)NH, we

search its surrounding regions (where the N chemical

shift is within 0.5 ppm and the H chemical shift is

within 0.05 ppm) in HNCACB for signaling slices in a

similar way. Note here our search looks for similar

(N;H) values only, rather than C values. If such a slice

is found, we pick the local maximum with the highest

intensity in the CBCA(CO)NH slice and up to three local

maxima providing that the intensity is higher than 10 %

of the highest intensity. The reason to select up to four

peaks in each slice is to deal with the situations where

spin systems overlap at the same (N;H) position or

peaks in spin systems have unusual intensities, which are

the main challenging issues in automated assignment. We

then search in the corresponding HNCACB slice in a

similar way for up to four positive and negative local

maxima. We further search for the matches between the

local maxima sets in the two slices and identify the

largest positive and negative matches. If such matches

are found, they are fixed to be CAi�1 and CBi�1 and the

largest unmatched positive and negative peaks in the

HNCACB slice are set to CAi and CBi, respectively. If

only one match is found (without loss of generality,

suppose that it is positive), it is set to be CAi�1 and the

largest unmatched local maximum in CBCA(CO)NH

whose chemical shift value falls in the theoretical ranges

of Cb is set to be CBi�1. The largest unmatched positive

local maximum in HNCACB is set to be CAi. For CBi,

we will take the largest two negative local maxima in

HNCACB as candidates for it. In this case we will form

two spin systems with the two values of CBi. If no

match is found, the largest CBCA(CO)NH local maxi-

mum in the theoretical range of Ca values is set to be

CAi�1. Similarly, the largest CBCA(CO)NH local

maximum in the theoretical range of Cb values is set to

be CBi�1. Now, we will take the largest two positive

local maxima in HNCACB as two candidates for CAi

and the largest two negative local maxima as two can-

didates for CBi. Thus, we have four combinations

forming four spin systems. The underlying idea behind

this combinatorial way of spin system forming is to

accommodate missing peaks and missing/wrongly-

assigned chemical shifts that are key to connectivities.

That is, this step tries to form spin systems as complete

and correct as possible, whereas the next assignment step

will assign imperfect spin systems through a stochastic

heuristic algorithm.

Resonance assignment using a genetic algorithm

To assign the spin systems to corresponding residues, we

developed a genetic algorithm. The idea was inspired by

GANA (Lin et al. 2005), which is also based on a genetic

algorithm. However, GANA uses spin system groups as

assignment units and encodes connectivity information in

the fitness function, whereas our method treats ambiguous

spin systems as individual ones and encodes both con-

nectivity information and amino acid typing information
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in the fitness function. These differences are further

detailed below and experiments demonstrate these differ-

ences result in significant improvements in the output of

our method compared with that of GANA.

Basics of genetic algorithms

Genetic algorithm, a popular method in artificial intelli-

gence, is a heuristic search approach that mimics the pro-

cess of natural evolution. In a genetic algorithm, the search

states are often represented as a string of bits. The algo-

rithm starts with a random ‘population’ of states, each of

which is called an ‘individual’. A fitness function is defined

and applied to evaluate the quality of each individual. The

individuals are selected proportionally to their fitness

scores to derive the next ‘generation’ with the same num-

ber of individuals. There is a low chance for each indi-

vidual in the new generation to have a mutation, which is a

change to one bit in the state representation. The generation

after a mutation is then used as the initial generation for the

next round of evolution. This procedure continues until

convergence or a maximum number of generations is

reached. A genetic algorithm is conceptually analogous to

hill climbing on the fitness function, but it is more

advanced in the sense that it has a mechanism that allows it

to jump out of local minima.

The fitness function

The fitness function is one of the most important features in

genetic algorithms. It can significantly influence both the

efficiency and effectiveness of evolutionary algorithms.

GANA uses a fitness function based on connectivity

information between the spin systems. The fitness function

used in our method, however, consists of two parts, one for

encoding connectivity information and the other for

encoding amino acid typing information.

The connectivity part of our fitness function is defined in

a similar way as in GANA (Lin et al. 2005). To define the

fitness score of an individual, each residue i assigned by the

spin system xi is examined to determine whether or not xi is

connected with xi�1 and xiþ1. If residue i is not assigned, xi

is set to 0. Two variables, DLðiÞ and DRðiÞ, are then defined

as the sum of the absolute differences between the corre-

sponding CA and CB chemical shifts, to reflect the degree

of connectivity between (xi�1; xi) and (xi; xiþ1), respec-

tively. DLðiÞ and DRðiÞ are then binned into the ranges of

[0.0, 0.1), [0.1, 0.3), [0.3, 0.5), [0.5, 0.7), [0.7, 1.0) and

[1.0, 1) and scored as 5, 4, 3, 2, 1 and �3, respectively.

The binned scores are denoted as SLðiÞ and SRðiÞ. The

connectivity score for xi is then defined as:

ScoreconðxiÞ ¼

0; if xi ¼ 0;

1; if xi 6¼ 0;xi�1 ¼ xiþ1 ¼ 0;

SLðiÞ; if xi;xi�1 6¼ 0;xiþ1 ¼ 0;

SRðiÞ; if xi;xiþ1 6¼ 0;xi�1 ¼ 0;

SLðiÞþ SRðiÞ; otherwise.

8
>>>>>><

>>>>>>:

ð1Þ

The connectivity score of the individual is then defined as:

SCORECONðindÞ ¼
Pl

i¼1 ScoreconðxiÞ, where l is the length

of the protein. Thus, the connectivity score is defined in the

same way as in (Lin et al. 2005).

Our fitness function contains another term to encode the

amino acid typing information to evaluate the score of

assigning a spin system to an amino acid. This information

is not included in GANA’s fitness function because GANA

works on spin system groups rather than on spin systems.

We first built a database that contains CA and CB chemical

shifts for each residue and its previous residue (if it exists)

in the BMRB database (Seavey et al. 1991). Each entry in

our database thus contains four chemical shift values and

two corresponding amino acids, one for the current residue

and the other for the preceding residue. To calculate the

amino acid typing score that a spin system, xi, assigns to a

residue, we search in the database the entries that had the

same amino acid types for the residue and its preceding

one. The root mean square distance (rmsd) of carbon

chemical shifts between each of these entries and the spin

system is calculated and the smallest rmsd (denoted as d)

is picked up. The amino acid typing score for assigning

this spin system to the residue is then defined as

ScoreAAðxiÞ ¼ 1=d. The intuition is to prefer the amino

acid typing with smaller chemical shift difference in terms

of rmsd. The amino acid typing score for an individual is

thus defined as SCOREAAðindÞ ¼
Pl

i¼1 ScoreAAðxiÞ.
The fitness function used in our method is the weighted

sum of these two terms,

SCOREðindÞ ¼ SCOREconðindÞ þ w � SCOREAAðindÞ;
ð2Þ

where w is set to 5 by default and can be customized by the

user. The value of five was selected because SCOREcon was

often several times larger than SCOREAA. In all of our

experiments, the BMRB entries of the target protein and its

homologs are removed to ensure a fair comparison. Our

fitness function provides a tradeoff between amino acid

typing and connectivity information, thus can naturally

handle a number of issues in assignment, including missing

chemical shifts in spin systems, wrongly grouped chemical

shifts in spin systems, unusual chemical shifts for particular

amino acids, and missing connectivity between spin

systems.
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The genetic algorithm model

The genetic algorithm model has the following

components:

• Initialization: Each individual is represented by a 1D

vector of length l, where l is the length of the protein to

be assigned. Each entry in this vector can be assigned

an integer between 0 and m, where m is the number of

spin systems. If the entry is assigned 0, this means that

the residue is not assigned. Otherwise, it is assigned by

the corresponding spin system. To generate one indi-

vidual randomly, our model starts with an unassigned

vector, i.e., all entries are set to 0. We then randomly

select a residue to assign a random spin system that has

CA and CB values that fall into the expected chemical

shift range of the amino acid type of the residue. The

ranges are relaxed ranges of the theoretical chemical

shift values such that noise and errors are tolerated (see

Table S2). We then try to extend this assigned residue

to both directions. To extend to the left, we randomly

select an unassigned spin system that has CA and CB

values within 0.5 ppm to the CA�1 and CB�1 values of

this residue. Similarly, to extend to the right, we

randomly selected an unassigned spin system that has

CA�1 and CB�1 values within 0.5 ppm to the CA and

CB values of this residue. This extension continues

until no extension is available. We then randomly select

another unassigned residue to repeat this assignment

and extension procedure. The iteration ends when no

more residue can be assigned. We generate 600

individuals for the initial population.

• Selection: Each individual is evaluated by our proposed

fitness function, SCOREðindÞ, and assigned a fitness

score. To generate the new generation, each individual

has a probability that is proportional to its fitness score.

That is, the higher the fitness score, the more likely it is

that this individual is in the next generation.

• Crossover: The individuals in each generation are

ranked by their fitness scores and the top 50 % are kept

in the generation after crossover. These top 50 % are

also treated as parent candidates for crossover opera-

tion. Seventy percent of the remaining 50 % are

generated using crossover. The crossover is done in

the same way as in GANA (Lin et al. 2005). That is,

two individuals are selected to generate one new

individual by randomly selecting a position from either

individual to copy to this new, empty assignment (i.e.,

new individual). If this position is assigned by a spin

system in the selected individual, it is copied to the new

assignment and extended to both directions by refer-

encing the selected individual. That is, starting from

this copied spin system, we extend to both directions

according to the connected fragment in the selected

individual that contains this spin system, until the

end(s) of the fragment or until the spin system(s) in the

copied fragment is already used in the newly formed

individual, whichever happens earlier. Otherwise, we

randomly select another position of either individual to

copy to the new one. This procedure is repeated until no

further assignment can be done for the new individual.

The remaining individuals of the new generation after

crossover are generated using the random chromosome

initialization as in the initialization step.

• Mutation: Mutation is an important exploration step

that can potentially help genetic algorithms to jump out

of local maxima. In our method, each position in each

individual has a probability of 0.2 % to be mutated. We

started from the first position. Once a position is

selected for mutation, we randomly select an unas-

signed spin system that has CA and CB values that fall

into the expected ranges of the amino acid to replace

the existing spin system. We then extend the spin

system to the right for as far as possible by considering

the connectivity information as explained in the

initialization step. This extension is done to avoid

splitting of connected fragments into pieces. Once the

extension is finished, the next position is selected for a

mutation with the same 0.2 % chance, until all the

positions are traversed. It should be noted that although

mutation provides a mechanism to possibly jump out of

local maxima, it does not guarantee a search path to a

better assignment, nor does it guarantee a complete

assignment.

• Stopping condition: Our genetic algorithm stops if

either the best fitness score among individuals does not

improve over 100 consecutive generations or the

maximum number of 500 generations is reached,

whichever is sooner.

Results

Performance on raw NMR spectrum sets

We tested our method on the spectrum sets of four real

proteins, TM1112 from Thermotoga maritima, CASKIN

(the SH3 domain of the CASKIN neuronal signaling pro-

tein), VRAR (S. aureus VraR DNA binding domain), and

HACS1 (the SH3 domain of the HCAS1 human myeloid/

hemopoetic signaling protein). These four proteins are the

same as those used to test IPASS (Alipanahi et al. 2011).

Although these four proteins are considered to be small-

or medium-sized proteins in NMR (67–89 aa), (Alipanahi

et al. 2011) showed that fully automated peak picking and
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resonance assignment of proteins of this size were still very

challenging and most existing methods performed poorly.

There are two main reasons for this poor performance.

First, automatically picked peaks contain both false posi-

tives and false negatives, which introduce errors and noise

in the formation of the spin systems. Second, although they

perform perfectly on simulated data sets, existing reso-

nance assignment methods are not error tolerant enough to

handle peaks chosen by automated methods.

For evaluation purposes, we measure recall, precision

and F1-score. Assume that the target protein has Nr man-

ually assigned residues and that our resonance assignment

method assigns No residues, where Tp of them are assigned

correctly. Recall is then defined as Tp=Nr, while precision

is defined as Tp=No. The F1-score is defined as the har-

monic mean of recall and precision. For a non-proline

residue, a spin system is considered to be assigned cor-

rectly if and only if at most one chemical shift is out of the

error range (0.5 ppm for nitrogen and carbons, and 0.05

ppm for hydrogen) of the manual assignment. For a proline

residue, a spin system is considered to be assigned cor-

rectly if and only if both its carbon chemical shifts are

within the error range of the manual assignment.

We compared our method with four state-of-the-art

methods, MARS (Jung and Zweckstetter 2004), IPASS

(Alipanahi et al. 2011), AUTOASSIGN (Zimmerman et al.

1997) and GANA (Lin et al. 2005). All these methods are

resonance assignment methods that require the inputs to be

peak lists or spin systems. In (Alipanahi et al. 2011),

PICKY (Alipanahi et al. 2009) was used to automatically

pick peaks from four spectra, 15N-HSQC, CBCA(CO)NH,

HNCACB, and N-NOESY, as inputs to IPASS and

MARS. Here, we followed the same procedure for

these two methods. AUTOASSIGN requires peak lists

from the 2D 15N-HSQC as the root list, plus peak lists from

CBCA(CO)NH and HNCACB. The peaks picked by

PICKY on these three spectra were thus fed into AUTO-

ASSIGN. GANA requires formed spin systems as inputs.

For the sake of fair comparison, we gave two types of

inputs to GANA, i.e., the spin systems formed by IPASS

(denoted as GANAa) and the spin systems formed by our

method (denoted as GANAb). The assignments from

IPASS, MARS and GANAa were therefore performed by

using four spectra; that from AUTOASSIGN was done on

three spectra; whereas those from GANAb and our method

were performed by using only two spectra.

Table 1 shows the performance of the five methods on

the four real protein data sets. Our method significantly

outperforms all other methods on recall and F1-score,

while it compares favorably on precision. For IPASS,

MARS, AUTOASSIGN and GANAa, the spin systems are

formed by the peaks picked by PICKY that does not take

assignment needs into consideration. Our method, although

using a less number of spectra, effectively identifies better

spin systems by simultaneously picking peaks and forming

spin systems, thus achieving significantly more accurate

assignments on all the proteins. This conclusion is further

supported by comparing the results from GANAa and

GANAb. When GANA takes the spin systems formed by

our method as input, it performs significantly better than

when taking spin systems formed by IPASS as input. The

F1-score is approximately 100 % better. Note that the only

difference between GANAa and GANAb is the spin sys-

tems that are used as input. This suggests that our simul-

taneous slice picking and spin system forming framework

is much more accurate than the traditional pipeline that

treats these two steps separately. Our method also signifi-

cantly outperforms GANAb, which uses the same spin

systems as input as our method uses. This implies that the

novel fitness function in our genetic algorithm is more

Table 1 Performance comparison between MARS, IPASS, AUTOASSIGN, GANA and our method on four real protein data sets

Protein Len Man MARS IPASS AUTOASSIGN GANAa
GANAb Our method Proline

TM1112 89 89 55/63 71/72 67/76 42/64 86/87 86/87 5/5

CASKIN 67 58 23/25 29/39 9/18 24/34 36/56 40/56 1/3

VRAR 72 60 6/17 30/37 7/7 8/18 34/54 42/54 0/0

HACS1 74 61 15/16 37/50 18/24 6/21 39/60 42/59 1/3

RECave – – 0.34 0.60 0.33 0.28 0.69 0.76 –

PREave – – 0.77 0.82 0.78 0.52 0.73 0.80 –

F1ave – – 0.47 0.69 0.42 0.36 0.71 0.78 –

The second column gives the number of residues in the protein. The third column gives the number of manually assigned residues (including

prolines). Starting from the fourth column, the performance of each method is shown in the format of ‘‘number of correctly assigned residues/

total number of assigned residues’’. GANAa lists the results of GANA by using the same spin systems formed by IPASS as input. GANAb lists

the results of GANA by using the same spin systems formed by our method as input. The last column gives the ‘‘number of correctly assigned

proline residues/total number of manually assigned proline residues’’. RECave;PREave and F1ave stand for the average recall, precision and F1-

score, respectively

J Biomol NMR (2014) 59:75–86 81

123



effective than GANA’s fitness function. Figure 1 shows the

receiver operating characteristic (ROC) curves for our

method and GANAb on these four protein data sets, which

suggests that the improvements of our method over GANA

is not just the result of a better tradeoff parameter, but the

result of a consistently better method. Another noticeable

advantage of our method over the existing methods is that

our method does not depend on peaks from 15N-HSQC,

which is considered as a root spectrum that is widely used

in computational peak refinement and spin system forming.

Methods that depend on 15N-HSQC, such as IPASS, cannot

assign proline residues because prolines do not have peaks

in 15N-HSQC. Our method, on the other hand, can assign

prolines through slices that correspond to the residues after

prolines. As shown in Table 1, our method is able to assign

most of the proline residues correctly in these proteins

(seven correctly assigned prolines out of eleven).

Among these proteins, the performance of different

assignment methods on TM1112 is significantly better than

that on the other three proteins. This is due to the nature of

CASKIN, VRAR and HACS1. CASKIN and HACS1 both

have long, flexible regions that even manual assignments

are not available. The proteins are thus partitioned into

various segments by those flexible regions, which signifi-

cantly reduced the connectivity information among spin

systems. VRAR, on the other hand, is a helical protein that

is known to be difficult to assign, even by manual assign-

ment. Since chemical shift values depend on local geo-

metric and environmental factors, residues of VRAR have

very similar carbon chemical shift values, which intro-

duced a large number of ambiguities in assignment.

Therefore, future research is needed to improve the accu-

racy of our method on helical proteins and proteins with

flexible regions.

Although the goal of our method is not to pick peaks, we

evaluated the peaks identified in the slices picked by our

method. We applied a naı̈ve approach that picks the peak

with the highest intensity in each of our slices in

CBCA(CO)NH and up to three other peaks in the same

slice providing that their intensities are higher than 10 % of

the highest peak. For HNCACB, we did the same selection

for peaks with both positive and negative intensities. This

naı̈ve method is able to identify most of the true C-slices

(Figures S6–S9). Figure 2 shows the performance com-

parison of this approach with two state-of-the-art peak

picking methods, PICKY (Alipanahi et al. 2009) and

WaVPeak (Liu et al. 2012). Our approach compares

favorably on recall but slightly worse on precision. This

implies that statistically better peaks do not necessarily

lead to better assignments. This explains why simply

combining state-of-the-art methods in a sequential order

often does not yield a good pipeline. Instead, peak picking

and assignment steps should be considered simultaneously.

Performance on spectrum sets simulated from manual

assignments

We further tested our method on a simulated data set that

consists of 20 proteins, ranging from 66 to 370 aa. In

contrast to previous studies that use simulated peaks to test

assignment methods, we simulated spectra to evaluate our

framework for simultaneous slice picking and resonance

assignment. To simulate various sources of noise in real

spectra, we first generated all the ideal spin systems from

the manual chemical shift assignment of each of these

proteins. We then randomly generated 20 % more spin

systems to simulate false positive signals in real spectra.

Note that each complete spin system can be decomposed

into four HNCACB peaks (less than four if the residue or

the preceding one is glycine), two CBCA(CO)NH peaks

(one if the preceding residue is glycine), and one
15N-HSQC peak. Expected peaks in CBCA(CO)NH,

HNCACB, and 15N-HSQC were extracted from all these

spin systems. Each chemical shift value of each peak has a

10 % chance to be shifted by ?0.2 or �0.2 ppm for N and

C, and ?0.02 or �0.02 ppm for H. These shifts simulated

the linking errors in real spectra. Each peak then has a 1 %

probability to be removed, which simulated false negatives

in real spectra. For each ðN;HÞ slice in CBCA(CO)NH and

HNCACB, we randomly added a peak with 10 % proba-

bility to introduce ambiguities into the formation of spin

systems. Peaks were constructed to have the same inten-

sities. After all peaks were constructed, we added white

Gaussian noise to all the data points in the spectra. The

noise was set to have a zero mean and the standard devi-

ation to be the root of the intensity of the peaks. The

simulated spectra thus contained noise, false positive

peaks, false negative peaks, linking errors and ambiguous

Fig. 1 ROC curves for our method and GANAb on the four protein

data sets. GANAb denotes GANA by using the same spin systems

formed by our method as input
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spin systems. It turned out that our method was not very

sensitive to the settings of these errors (data not shown).

We compared our method with RIBRA (Wu et al.

2006), AUTOASSIGN (Zimmerman et al. 1997) and

GANA (Lin et al. 2005) on these 20 simulated sets of

spectra. WaVPeak (Liu et al. 2012) was used to pick

peaks from the simulated spectra. RIBRA and AUTO-

ASSIGN required the peaks from all three spectra as

inputs, whereas GANA and our method required the peaks

from only two. The spin systems formed by our method

were used as inputs to GANA. Table 2 shows the per-

formance comparison between the four methods. Both our

method and GANA significantly outperformed RIBRA

and AUTOASSIGN in terms of recall and F1-score, while

our method also exhibited clear improvements over

GANA. In terms of the F1-score, our method has almost

twofold improvement over RIBRA and AUTOASSIGN.

This comparison demonstrated the proposed simultaneous

framework is much more effective and powerful than the

traditional sequential pipeline. Again, the reason for the

improvement in performance of our method over GANA

is the fitness function proposed in our method. It should

also be noted that AUTOASSIGN, GANA with our spin

systems and our method all have a reasonably high pre-

cision value, which suggests these methods can provide

reliable assignments to the users.

Fig. 2 Peak picking

performance comparison on

a CBCA(CO)NH and

b HNCACB spectra of the four

real proteins. The recall and

precision values are averaged

over the four proteins

Table 2 Performance

comparison on the simulated

date sets

The first column on the left

presents the protein ID in the

BMRB database, sorted

according to the protein’s

length. The next column gives

the length of the 20 proteins.

Starting from the third column,

the precision (PRC) and recall

(REC) values for RIBRA,

AUTOASSIGN, GANA and our

method are listed

Protein Len RIBRA AUTOASSIGN GANA Our method

PRC REC PRC REC PRC REC PRC REC

bmr4391 66 0.83 0.41 0.58 0.19 0.79 0.83 0.84 0.83

bmr4752 68 0.62 0.39 0.95 0.67 0.94 0.91 0.97 0.94

bmr4144 78 0.69 0.26 0.67 0.21 0.61 0.52 0.88 0.71

bmr4579 86 0.66 0.37 0.88 0.46 0.93 0.88 0.90 0.88

bmr4316 89 0.71 0.48 0.96 0.81 0.77 0.70 0.88 0.82

bmr4288 105 0.82 0.52 0.93 0.44 0.86 0.83 0.94 0.90

bmr4929 114 0.74 0.45 0.81 0.56 0.84 0.79 0.89 0.82

bmr4302 115 0.63 0.37 0.90 0.36 0.86 0.86 0.86 0.86

bmr4670 120 0.81 0.53 0.74 0.44 0.81 0.79 0.83 0.76

bmr4353 126 0.88 0.46 0.68 0.31 0.77 0.76 0.90 0.88

bmr4027 158 0.52 0.34 0.56 0.32 0.93 0.92 0.97 0.96

bmr4318 215 0.43 0.19 0.96 0.23 0.81 0.80 0.90 0.89

bmr4836 217 0.42 0.30 0.69 0.22 0.87 0.85 0.96 0.94

bmr4102 221 0.61 0.36 0.85 0.29 0.74 0.78 0.82 0.85

bmr4022 260 0.37 0.21 0.88 0.25 0.80 0.79 0.92 0.90

bmr6074 261 0.36 0.21 0.87 0.24 0.80 0.79 0.91 0.89

bmr4384 262 0.49 0.33 0.95 0.30 0.87 0.87 0.89 0.91

bmr5316 288 0.32 0.15 0.85 0.14 0.74 0.76 0.77 0.79

bmr6136 306 0.41 0.22 0.97 0.24 0.72 0.72 0.76 0.75

bmr4987 370 0.27 0.17 0.73 0.25 0.73 0.75 0.78 0.80

Average – 0.58 0.34 0.82 0.35 0.80 0.78 0.86 0.84

F1-score – 0.42 0.47 0.79 0.85
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When the protein size increases, the performance of

different methods generally decreases. This suggests that

for longer and more complex proteins, more spectra are

needed to provide more information to assignment.

Structure calculation from chemical shift assignment

Although our method provides significantly more complete

and accurate chemical shift assignment than other state-of-

the-art methods, the assignment done by our method is still

not complete. It is thus not clear whether such assignment

could lead to accurate 3D structures of the target protein,

which is the ultimate goal of the NMR protein structure

determination process. To test this, we tried to calculate the

final structures of the four target proteins solely from the

chemical shift assignments and amino acid sequences by

using the CS-ROSETTA server (Shen et al. 2008, 2009).

For each target protein, we used three types of inputs

besides the amino acid sequence for CS-ROSETTA. The

first one is the manual assignment downloaded from

BMRB. The second one is the chemical shift assignment

predicted by our method from the raw NMR spectrum set

of the target. The third one is the empty assignment file,

which requires CS-ROSETTA to calculate final structures

solely based on sequence information. The third input was

used to confirm sequence information alone could not lead

to accurate 3D structures, even if close homologs of the

target protein might be in the database of CS-ROSETTA.

For each input, 3,000 structural models were generated by

CS-ROSETTA.

As shown in Table 3, when the chemical shift assign-

ments predicted by our method were used, accurate struc-

tural models could be generated and good models were

always ranked in top, which made the model selection step

much easier. In fact, the structures calculated based on our

assignments are as good as those based on the manual

assignments, and sometimes even better. It is also clear that

sequence information alone is not sufficient to lead to

accurate structural models. The top scored models were

aligned well with the experimentally determined native

structures (Fig. 3).

Conclusion

In this paper, we proposed a framework for NMR reso-

nance assignment that works significantly better than the

state-of-the-art on real, noisy protein data sets. The

framework is based on simultaneous slice picking and

spin system forming. It requires as few as two through-

bond spectra as inputs. If additional spectra are available,

e.g., N-NOESY, our slice picking method can be

Table 3 Calculated structures of CS-ROSETTA for the four real proteins

TM1112 CASKIN VRAR HACS1

Man Ours NoCS Man Ours NoCS Man Ours NoCS Man Ours NoCS

RMSDTopScore 1.32 1.34 17.02 11.85 3.36 8.80 2.27 2.77 14.08 1.13 2.96 7.88

RMSDBestOfTop10 1.20 1.22 14.07 4.30 3.36 6.99 1.99 2.19 9.38 1.08 2.96 7.88

RMSDBestOfPool 1.20 1.12 12.06 2.30 2.82 6.07 1.68 1.66 8.63 1.08 1.83 6.81

‘Man’, ‘Our’, and ‘NoCS’ stand for the calculated structure pool of CS-ROSETTA that takes the BMRB manual assignments, the assignments by

our method, and only amino acid sequences without chemical shift assignments as inputs, respectively. ‘RMSDTopScore’, ‘RMSDBestOfTop10’, and

‘RMSDBestOfPool’ stand for the RMSD of the structural model that has the lowest the CS-ROSETTA scoring function, the lowest RMSD within the

top 10 models by the CS-ROSETTA scoring function, and the lowest RMSD within the entire structural model pool generated by CS-ROSETTA,

respectively. All the values in the table are in Å

Fig. 3 Structural alignments between the top scored structural

models by using CS-ROSETTA with our assignments and the

experimentally determined native structures for the four real proteins.

The structures in cyan are the native structures and those in magenta

are the calculated structures. a TM1112. b CASKIN. c VRAR.

d HACS1
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straightforwardly applied to pick slices in those spectra

and, at the same time, those spectra can provide feedback

information to direct slice picking in CBCA(CO)NH and

HNCACB. We demonstrated that the assignments done by

our method can lead to accurate structural models. Our

method is open source. The source code, README and

sample data are freely available at http://sfb.kaust.edu.sa/

Pages/Software.aspx.
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Herrmann T, Güntert P, Wüthrich K (2002) Protein NMR structure

determination with automated NOE-identification in the NOESY

spectra using the new software ATNOS. J Biomol NMR

24:171–189

Ikeya T, Takeda M, Yoshida H, Terauchi T, Jee JG, Kainosho M,

Güntert P (2009) Automated NMR structure determination of

stereo-array isotope labeled ubiquitin from minimal sets of

spectra using the sail-flya system. J Biomol NMR

44(4):261–272. doi: 10.1007/s10858-009-9339-6

Jang R, Gao X, Li M (2010) Towards automated structure-based

NMR resonance assignment. Lecture Notes Comput Sci

6044:189–207

Jang R, Gao X, Li M (2011) Towards fully automated structure-based

NMR resonance assignment of 15N-labeled proteins from

automatically picked peaks. J Comput Biol 18:347–363

Jang R, Gao X, Li M (2012) Combining automated peak tracking in

SAR by NMR with structure-based backbone assignment from

15N-NOESY. BMC Bioinform 13(S3):S4

Johnson B, Blevins R (1994) NMR view: a computer program for the

visualization and analysis of NMR data. J Biomol NMR

4:603–614

Jung Y, Zweckstetter M (2004) Mars-robust automatic backbone

assignment of proteins. J Biomol NMR 30:11–23

Koradi R, Billeter M, Engeli M, Güntert P, Wüthrich K (1998)
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